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Abstract

The environment around the Ca cation for com-
pounds involving bonded oxygen has been studied
for 254 inorganic structures containing a total of 368
polyhedra. Selection was made on the basis of the
accuracy of the structural data. The coordination
number (CN) was assigned using the criteria of
maximum gap in the Ca—O distances and balanced
bond-valence sums for Ca, but 32 cases were still
difficult to assign unambiguously. A series of vari-
ables related to the Ca—O distances were calculated
and averaged for each value of CN. The Gaussian
curves representing the distribution of these variables
for each CN overlap strongly. By way of contrast,
the volume of the coordination polyhedra (Vol)
showed well separated curves. Statistical analysis was
applied to the set of structures with known CN, with
seven variables and then with Vol alone, which seems
to discriminate between the various CN groups
equally well. A strong linear dependence was found
for CN versus Vol. A method is proposed to assign
CN in uncertain cases based on the equation: CN =
0-197 (2)Vol + 2:83 (5). Application of this equation
to the unassigned cases compares favourably with
discriminant analysis using the larger set of variables.

Introduction

One of the most common ways of describing an
inorganic crystal structure is to define coordination
polyhedra around the cations. It is therefore impor-
tant to have precise rules in order to establish which
anions are coordinated by the cations. Pfeiffer (1915,
1916) introduced the concept of coordination
number (CN hereafter), defined as ‘the number of
near neighbours linked by valence forces to a central
atom’. In most cases one can distinguish between the
nearest and second-nearest neighbours on the basis
of the maximum gap in the cation—anion distances
ranked in increasing order (Brunner & Schwarzen-
bach, 1971). Unfortunately, this gap does not always

* Preliminary results on this work were presented at the XIth
European Crystallographic Meeting, Vienna (Chiari, 1988; Chiari
& Ferraris, 1988).
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exist, especially for distorted polyhedra and high
values of CN. Brown (1988) affirms that ‘the assign-
ment of CN in inorganic structures is usually a
matter of individual judgment, although there have
been a number of attempts to devise systematic
definitions’.

Pauling (1929, 1960) calculates the predicted CN
(PCN) on the basis of ionic radius ratio. Frank &
Kasper (1958), for alloy structures, define CN by
considering the Voronoi (1908) polyhedron sur-
rounding each atom [the difficulties arising from this
approach were discussed by O’Keeffe (1979)]. Brun-
ner (1977) suggests taking the largest gap in the
differences of the reciprocals of the interatomic dis-
tances as the cut-off criterion. This method was
applied in order to determine CN for calcium coordi-
nated to water (Einspahr & Bugg, 1980), except that
no O atom with Ca—O less than 2-8 A was excluded.
Brunner (1977) and Bhandary & Girgis (1977) pro-
posed giving each atom a weight which decreases
with cation—anion distance. This leads to a non-
integral CN. Carter (1978) and O’Keeffe (1979)
regard coordinating atoms as contributing faces to
the Voronoi polyhedron and their contributions are
weighted in proportion to the solid angle subtended
by the face at the centre, which again leads to
non-integral CN’s. The same is true for the effective
coordination numbers proposed by Hoppe (1979).
Gelato (1981) calculates the domain of an atom in a
structure, making use of the concept of ‘radical
planes’ introduced by Fischer, Koch & Hellner
(1971). Using the cut-off criteria proposed by Brun-
ner & Schwarzenbach (1971), Brunner (1977) and
O’Keeffe (1979) three weighted CN’s are calculated.
Sandomirskiy & Baturin (1985) assign CN for potas-
sium on the basis of the bond-valence balance for the
anions as calculated by the Pyatenko (1973) method.
They also made use of the maximum-gap criterion.
Altermatt & Brown (1985) select CN by checking the
agreement between the sum of the bond valence
[calculated according to Brown & Altermatt (1985)]
and the oxidation state of the cation. In this way
anomalous situations in which the cation receives an
excess or a deficiency of bond valence from the
anions can be made evident. It should be emphasized
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though, that the spread of bond-valence sums for
various polyhedra is such that this method does not
always lead to certain results. Furthermore, the
anions for which a doubt exists have the longest
distances from the cation, and their contribution to
the bond-valence sum is small. Therefore the case for
considering them, bonded or not, is a weak one.

An indication of the expected value of bond length
is given by the sum of the ionic radii, but this value is
of very little use in establishing CN, since normally
there is a large spread in the individual cation-anion
distances in the polyhedra.

Another criterion used to establish CN is to define
the largest cation—anion distance, L,,,,, that will still
be considered a bond. All anions which form a bond
exceeding that value are excluded from the coordina-
tion sphere. Donnay & Allmann (1970) estimate the
values of L., by extrapolating the ‘effective ionic
radii’ of Shannon & Prewitt (1969), which are them-
selves dependent on CN, to bond valence = 0. These
values are approximate and often appear to be too
large (3-25 ,3? for Ca—O) but they give an idea of
how far the search for possibly coordinated atoms
should be extended. Furthermore, every anion at a
shorter distance from the cation than L, cannot be
considered coordinated, because it could be
‘screened’ by other closer atoms.

It seems therefore that the problem of establishing
CN is still not completely solved. It is the author’s
intention to tackle this problem for a series of
cations by analysing, in an empirical way using
statistical methods, the geometry of their environ-
ments for the well-refined structures present in the
literature. The first cation selected for this inquiry is
calcium since it presents a large variety of CN’s.

The goal of this work is to find a statistical test,
based purely on structural information, which would
help in evaluating CN for the uncertain cases con-
cerning polyhedra where calcium is bonded to
oxygen. For this purpose: (a) only very accurate
structure determinations were selected; (b)) CN was
assigned, for all cases were there was no ambiguity,
using a combination of the criteria of the maximum
gap of the Ca—O distances and the bond-valence
sums for Ca; (c) a set of geometrical variables were
calculated for each polyhedron and averaged by CN
group; (d) the assumption was made that, for ambig-
uous cases, an indication of the most plausible CN
can be obtained by comparing the values of the
variables calculated for the CN’s in doubt with the
average values of the groups for which a CN was
certainly determined.

Selection of the data

In order to obtain the structural information in a
form easily processable by computer and to cover the
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majority of the inorganic crystal structures available
in the literature, the Inorganic Crystal Structure
Database (Bergerhoff, Hundt, Sievers & Brown,
1983) was used. The number of structures containing
calcium and oxygen, not necessarily bonded to one
another, is quite large (1866). It was greatly reduced
by careful inspection of the data. This was done in
an automatic way at first, using the retrieval pro-
gram CRYSTIN. The structures eliminated were: 417
defective; 69 disordered; 426 representing solid solu-
tions; 91 refined by X-ray powder, neutron powder
or electron diffraction methods; 43 not refined at
room temperature, in order to have consistent data;
and 410 having a final R value greater than 10%.
Only 410 structures were retrieved.

It is worth noting that the number of entries
rejected on the basis of the R value is quite large. A
trial run was carried out which also included
refinements with R values between 10 and 15%.
However, the great majority of these ‘poorly refined’
structures showed some fault, mainly unreasonable
distances, and are not considered in this work.

Only Ca—O polyhedra are taken into account in
the present paper. By inspection of the cation-anion
distances selected up to 3-3 A, S0 structures were
eliminated because they contained other anions
besides oxygen. Multiple refinements of the same
compound (46 cases), were also excluded to avoid
sample bias. Another 60 entries did not contain the
coordinates, or showed unreasonable distances, and
therefore an error in the coordinates. At the end of
the process only 254 structures (i.e. 13-6%) for a
total of 368 independent polyhedra passed the
screening.* All subsequent calculations were carried
out on this set of data. Although this initial selection
of the starting set was very laborious and time
consuming, it is of paramount importance for a
statistical work such as the present one, and the very
sharp reduction in the number of ‘good structures’
shows this.

General comments on the data

The Ca—O distance expected on the basis of the
ionic radius sum is 2-40 A. The grand mean of the
average Ca—O distances for the polyhedra with
certainly assigned CN (see below) is 2:46 A.

The PCN for Ca—O calculated on the basis of the
radius ratio (Pauling, 1960) is 8:7. Brown (1988)
found, by empirical examination of a large number
of structures, an average observed CN of 7-31, while
Nord & Kierkegaard (1984) using a different set of

* A list of references for the structures used has been deposited
with the British Library Document Supply Centre as Supplemen-
tary Publication No. SUP 53389 (6 pp.). Copies may be obtained
through The Technical Editor, International Union of Crystallog-
raphy, 5 Abbey Square, Chester CH1 2HU, England.
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data and accepting the CN assignments of the origi-
nal authors found a value of 7-48. These values
compare well with the average CN of 7-43 found in
this study.

The CN for Ca ranges from 6 to 12, and the
polyhedra are often very irregular. Nord & Kier-
kegaard (1984) quote two cases of CN = 5. The first
concerns Ca,, in a-Ca;(PO,), (Mathew, Schroeder,
Dickens & Brown, 1977). The environment of the Ca
atom was checked using the program MOLDRAW
(Ugliengo, Borzani, Chiari & Viterbo, 1989) and two
other non-screened O atoms were found at distances
of 2:907 and 3-107 A. This polyhedron was inserted
in the uncertain cases (between CN =6 and CN =7,
third case with COL =923 in Table 3) and was
assigned by discriminant analysis to CN =7 (see
below), therefore including the two atoms with larger
distances as well.

As for the other example of CN =15, namely
CaGa,0, (Deiseroth & Mueller-Buschbaum, 1971),
the R value of the refinement is not given and there is
a very short Ca—O distance (2-13 i). A drawing of
the polyhedron by MOLDRAW shows that it is quite
open on the side opposite to the short distance,
where there are two O atoms at a distance of 3-24 A.
The suspicion remains that there could be an error in
the Ca coordinates. Although the presence of CN =
5 for Ca cannot be excluded, it is not taken into
account in this paper.

Experimental method

The CN was assigned on the basis of the two most
used criteria: the maximum gap in the Ca—O dis-
tances and the bond-valence sums for Ca. For 32
polyhedra it was not possible to assign the CN on
this basis, and they were left out of the starting set to
be used later as a check of the statistical test still to
be found. For some polyhedra (see Table 3) a pro-
nounced gap existed but the first excluded atom was
less than 3 A from the Ca atom. These cases were
also considered ambiguous. The sums of bond
valence on Ca (Brown & Wu, 1976) were checked in
order to see that they did not differ from 2 by more
than 0-5 v.u. Some structures containing errors were
detected because the bond-valence sums showed
abnormal values [a discussion concerning Ca—O
bond valence has already been published (Chiari &
Ferraris, 1990) and is omitted from this paper]. In
this way 336 polyhedra were grouped by an unam-
biguously assigned CN, corresponding to 2504
individual Ca—O bonds.

For each polyhedron several quantities, all related
to the Ca—O distances, were calculated, that is: the
average Ca—O for each polyhedron, (d(Ca—O));
the e.s.d. of the Ca—O distribution, o c.—oy; the
minimum and maximum individual Ca—O distance,
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Table 1. Variables related to Ca—O distance (A),
listed according to CN

For each variable: first row, the average value by CN; second row, the e.s.d.
of the distribution (in parentheses), which gives and indication of the spread
of values; third row, the minimum individual value; fourth row, the
maximum individual value. Only the 336 polyhedra for which the CN was
unambiguously assigned (see text) are considered.

CN=6 CN=7CN=8 CN=9 CN=10 CN=11 CN=12

(dCa—0)) 2:371 2445 2493 2546  2-586 2685 2647
(0:03)  (0:03) (004) (003)  (0:04) - (0:08)
2310 2391 2442 2508 2538 - 2549
2442 2528 2584 2588 2621 - 2777
Gucaoy 0061 0114 0118 0146 0186 0-231 0-046
(005)  (006)  (0-06)  (0:05)  (0-04) - (0:08)
0 0026 0002 0070 0145 - 0:003
0180 0251 0269 0250 0239 - 0252
drun 2304 2322 2365 2378 2362 2279 2:59
(0:04)  (004) (005 (007)  (0-05) - (0:08)
2208 2224 2205 221 2326 - 2459
2392 2414 2490 2479 244 - 2708
dona 2458 2631 2676 2756 2827 2951 2691
©010)  (013)  (0-12)  010)  (0:08) - (0-16)
2310 2429 2446 2590 2734 - 2:549
2724 2929 2927 2952 2958 3042
84 0155 0308 ' 0311 0378 0465 0672 0:096
012) (015  (015) (015  (011) - (020)
0- 0008 0003 0139 0352 - 0
0442 0652 0678 0669 0632 - 0583
No. of cases 79 9% 131 17 5 1 8

dnin and d,., respectively; the distance range 6,=
dmax — dmin; and the bond-valence sums on Ca
(Brown & Wu, 1976).

For every group of assigned CN a histogram was
drawn for each variable to test its distribution, which
was found to be close to normal for all cases. All the
variables were averaged by group of assigned CN,
and the e.s.d. of the distribution was calculated.
Table 1 shows, grouped by CN, the values of these
averages (e.s.d. of the distribution in parentheses),
together with their minimum and maximum values
(which obviously refer to different polyhedra), and
the number of cases found for each CN. Thus, for
example, reported in the third line of the variable
dmin are the shortest individual Ca—O distances
found in each group of CN (the fourth line shows the
largest values of the minimum distances). The largest
individual Ca—O distances for each CN are shown
in the fourth line of the variable d,,,,. These data can
be useful to inorganic and structural chemists as well
as to mineralogists, during the preliminary steps of
crystal structure determination, or to assess the prob-
ability of correctness of a structure refinement.

From an inspection of Table 1, the following
observations can be made: the most common CN for
calcium is 8 (34% of the total), followed by CN =7
with 24% and CN = 6 with 20%. Only one case with
CN =11 was found, and it was omitted from all
subsequent statistics. This case refers to Cas in a
perovskite-type  structure: CsCa,Nb;0,, (Dion,
Ganne & Tournoux, 1984). In the same structure
there are two other Ca atoms with CN = 8 and one
with CN =9.
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The shortest individual Ca—O distance (2:205 A)
found was for CN =8, while the longest (3-042 A)
was for CN = 12. The oy ca—oy and the 8, give an
idea of the distortion of the polyhedra. The polyhe-
dra with CN =6 and 12 are the most regular. The
Ca—O distances (average, minimum and maximum)
increase with CN, as one would expect. Increasing
the number of coordinated O atoms obviously
increases the dimensions of the polyhedra, and
decreases the bond valence of each individual dis-
tance. Therefore all the Ca—O distances should
lengthen. Plots were drawn for each of these vari-
ables, and regression coefficients with respect to CN
were calculated. The spread of points was large, and
the dependence not linear.

Klebe & Lentz (1988) studied the bonding
geometry of Ca in molecular structures. They found
only six-, seven- and eightfold coordination in the
organic complexes, and the {(d(Ca—O)) reported by
them are systematically smaller than those found in
this work (2:322 A for CN =6, 2:394 A for CN =7
and 2-458 A for CN = §).

In contrast, the (d(Ca—O)) reported by Nord &
Kierkegaard (1984) compare well with those shown
in Table 1, namely 2:374 A for CN = 6, 2-460 A for
CN =7, 2:497 A for CN =8, 2:561 A for CN =9,
2:614 A for CN = 10 and 2686 A for CN = 12.

The theoretical Gaussian curves calculated for
each CN on the basis of the average value of each
variable and the e.s.d. of the distribution, were
renormalized taking into consideration the number
of polyhedra AN, which is different for each CN. The
formula used is: Y = [Nstep/o(27)"?lexp[ — 0-5(X —
X))/ o, ?, where X,, is the mean value, o, the e.s.d.
of the distribution and the value of step = (Xpax —
Xonin)/ Noars Was adapted in order that Ny, = 6 for all
CN (MNyars is the number of bars in the histogram).
Consequently, the area delimited by each Gaussian is
equal to N, and the curves can be compared in the
same plot. Fig. 1 shows these curves for (d(Ca—O0)),
which show a large degree of overlap (see also Table
1). The same kind of plots were drawn for all the
above quoted variables, with similar results. One can
conclude that the spread of the (d(Ca—O)) and the
other related variables is such that these cannot, by
themselves, be used in a discriminant analysis to
assign CN’s in ambiguous cases.

Other variables were then calculated, using a
modified version of the computer program
POLYVOL (Swanson & Peterson, 1980) which finds
the triangular faces having anions as vertices. The
program checks that no other anion lies on the faces,
within a small tolerance; otherwise the face is con-
sidered to be a polygon of higher order. By connec-
ting the vertices with the cation one obtains a series
of pyramids, whose volume is calculated and added
to obtain the total volume of the polyhedron. The
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variables calculated for each polyhedron were: the
volume (Vol); the total surface area (Area,,); the
minimum (Areap,), maximum (Area,,,) and aver-
age value ((Area)) of the area of the lateral faces and
the e.s.d. of their distribution (o (area)-

It is evident that the actual position of the cation
inside the polyhedron is irrelevant to the calculation
of these variables which, on the contrary, include
information on the position of the O atoms with
respect to one another.

Table 2 lists these variables, averaged by group of
CN. Vol and Area,, increase with CN, since they
depend on the dimension of the polyhedra. The
(Area) decreases for increasing CN, as one would
expect, since the larger number of O atoms forces
them to be closer to each other. The values of o7 rea)
are smaller for CN =6 and 12, indicating that the
polyhedra tend to be more regular for these CN, not
only with respect to the distribution of the O atoms
around Ca (as already pointed out) but also among
themselves.

The theoretical Gaussian curves were also plotted
for these variables. Fig. 2 shows the plot for the
volume. The overlap between the curves is reduced
with respect to Fig. I, and it is almost non-existent
for CN =6, 7, 8, which are the most common (see
also Table 2). For Area,,, a very similar plot was
obtained. It seems, therefore, that including these
variables in a discriminant analysis can improve the
results.

Statistical analysis

Linear-correlation  coefficients were calculated
among all the variables, averaged by CN, including
CN itself. The (Vol) is the variable that best

50

Frequency

20

(d(Ca-0))(A)

Fig. 1. Plot of the theoretical Gaussian distributions of the
variable (d(Ca-—0)) for the various CN groups. It can be seen
that a large overlap exists between the curves.
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Table 2. Polyhedron volumes (A% and areas (A?)
according to CN (for the unambiguous cases)

For each variable: first row, the average value by CN; second row, the e.s.d.
of the distribution (in parentheses), which gives an indication of the spread
of values; third row, the minimum individual value found in that CN group;
fourth row, the maximum individual value.

CN=6 CN=7 CN=8 CN=9 CN=10 CN=11 CN=12
Vol 1676 2081 2629 3129 35-56 4279 46:05
©57) (078 (125  (1'55)  (116) - (316)
1544 1899 2274 2761 34-41 - 4201
1810 2281 2955 3386 3692 - 50-90
Area, 3789 4391 4942 5446  S8-82 6589 6680
©71)  ©91) (138 (104  (193) - (393)
36:30 4140 4640 5280 5660 - 62:20
3950 4640 5310 5630 6130 - 7300
Arean, 408 370 345 329 312 329 318
032  (©024) (031) (027 (015 - ©11)
344 312 244 276 298 - 302
471 417 410 369 336 - 339
Arean,, 543 554 551 520 560 863 3-50
©33)  (106) (144 (113  (1-52) - (0-34)
474 4-58 422 419 435 - 311
624 1060 949 753 746 - 405
(Area) 474 446 417 393 384 388 334
©09) (021 (019  (013)  (036) - (0-20)
4-54 415 387 377 354 - 311
494 570 483 429 439 - 365
Oy 049 0-64 0-64 0-58 078 124 016
©18)  (045)  (040)  (026)  (037) - (0-14)
009 018 012 031 0-46 - 003
0-77 2:70 196 1-11 1-38 - 043

correlates with CN (R = 0-998). Fig. 3 shows this
plot (the point corresponding to CN =11 was
inserted in the drawing, but not used to calculate the
R value). This result means that each addition of an
O atom to the polyhedra causes Vol to increase by
an equal amount. As we have qualitatively seen, each
new O atom entering the coordination sphere forces
the other Ca—O distances to lengthen, and the O---O
distances to decrease. However, none of these varia-
tions are linearly correlated with CN. The volume,
which is influenced by their combined effect, on the
contrary, shows the above mentioned marked corre-
lation.

N
s &

Frequency

8

CN:10 CN=12

L
T T T

10 5 20 25 30 35 40 45 50
Volume (A3)

Fig. 2. Plot of the theoretical Gaussian distributions of the
polyhedral volume for the various CN groups. The curves are

almost completely resolved.

721

Statistical analyses were carried out using the
SPSS package (Microsoft Corporation, 1984), on
the basic set of 335 polyhedra (CN = 11 excluded)
for which CN was unambiguously assigned. This was
done to verify whether the selected variables were
able to discriminate among the various groups.

A factor analysis was carried out, using all vari-
ables (with the obvious exclusion of the assigned
CN), to see which were relevant to the analysis. Two
factors were selected by the program: the first,
grouped together in order of importance Vol,
Area,, (d(Ca—O0)) and d,,;,, and can be considered
dependent on the ‘dimension’ of the polyhedra. The
second involved dyax, O(uca—oy and &, and is
related to the ‘distortion’ of the polyhedra.

A cluster analysis was carried out using these
seven variables. It should be remembered that the
clusters found by the procedure were obtained with-
out any information about the preassigned CN. The
results were as follows: for CN=6, 7, 8 and 10
correctly separated clusters were obtained; CN =9
was not resolved (six cases grouped with CN = 8 and
ten cases with CN = 10); CN = 12 gave rise to two
clusters, one of five and one of three cases. A second
cluster analysis was carried out using only Vol as the
grouping variable. The results were the same as
before for CN = 6, 7, 10 and 12, while three cases of
CN = 8 were grouped with CN =9; as for CN =9, it
constituted a cluster by itself with the exception of
two cases.

A discriminant analysis was carried out using these
seven independent variables, and the assigned CN as
the group variable. All the polyhedra were assigned
to the expected CN group. In a second run, with Vol
alone as the independent variable, 98% of the

5
B 20 25 30 35 40 45 50
<Volume > by CN (A3

Fig. 3. Plot of CN versus the polyhedral volume averaged by CN.
Bars represent one e.s.d. The point for CN = 11, referring to
one polyhedron only, was not used to calculate the correlation
coefficient (R = 0-998).
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polyhedra were properly assigned (three errors for
CN = 8, two for CN =9 and two for CN = 12).

In conclusion, for the cluster and discriminant
analyses, the information contained in the volume
alone allows the proper assignment in the majority of
cases.

Control of the method for the ambiguous cases and
conclusions

One can try to assign CN for the ambiguous cases by
use of discriminant analyses in which the ‘certain’
cases characterize the groups by CN, and the
‘uncertain’ cases are entered as ‘ungrouped’, i.e.
without CN.

The normal procedure of attributing the
ungrouped cases consists of checking which of the
preformed groups each uncertain case is closest to.
In most applications the ungrouped cases have only
one value of the variables selected for the analysis. In
the present study the attribution is complicated by
the fact that, for the uncertain cases, one set of
variables can be calculated for each possible CN.
Each polyhedron is therefore entered at least twice,
and for each entry a separate attribution is made to
the groups. For each entry the program calculates:
P(G/D), the posterior probability that the case
belongs to one group rather than to any of the other
groups; P(D/G), the conditional probability that the
discriminant score of the case belongs to the
Gaussian distribution of the group to which the case
is assigned.

By inspection of these values assignment of the
most plausible CN was attempted. It should be
stressed that if the values of the discriminant scores
are lower (even though very different) than the aver-
age for CN = 6, the P(G/D) is equal to one for CN =
6, while for very large values of the variables, P(G/D)
is equal to one for CN = 12. Furthermore, in many
cases the P(G/D)’s for alternative CN’s were either
equal or very close to each other. In these instances
the attribution of CN was based on the comparison
of the P(D/G)’s.

A discriminant analysis was carried out, with the
above mentioned seven variables and Rao’s V
method, also known as the Lawley-Hotelling trace
(SPSS, Microsoft Corporation, 1984, p. B22), which
includes the variables using a stepwise algorithm:
each variable introduced is that which results in the
largest difference among the groups means. This
method gives an idea of the importance of each
variable to the model. The variables were introduced
in the following order: Vol, (d(Ca—O0)), Area,,
Amax> O (dca—0yy 04 aNd dpin. (The first three variables
depend upon the dimensions of the polyhedra, which
seem therefore more important than the distortion
for the discriminant analysis). A second run was
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carried out using Vol alone. Table 3 shows the values
of the variables for the uncertain cases. For each case
there are at least two sets of variables, corresponding
to the CN in doubt (in two instances — COL = 4345
and COL = 17034 — there are three lines correspond-
ing to three possible CN). The assignments on the
basis of the two discriminant analyses are marked in
the third and fourth columns with the symbols: R for
Rao’s method using seven variables, and V' for Vol
alone. These attributions do not always agree with
each other. The symbol * indicates that the suggested
CN does not correspond to the number of O atoms
in the polyhedron. These are the best assignments,
since one of the alternatives is obviously wrong. For
example, the first case in Table 3 indicates that both
discriminant analyses assigned CN =9 as the most
probable (the two * on the first line, which refer to a
polyhedron having ten O atoms, indicate that both
discriminant analyses assigned it to a CN group
different from ten).

For ten cases the results were in contrast. Using
the program MOLDRAW, these polyhedra were
drawn, to check the assignments on the basis of
geometrical considerations. For instance, an atom
may be screened by two other atoms at shorter
distance or, on the contrary, an oxygen with a long
Ca—O distance may face a large empty space in the
polyhedron. Except for two of them (COL =9276
and COL = 16039) the indication given by Vol alone
was the most plausible.

In conclusion, the statistical method used seems
capable of resolving most uncertain cases.

A useful test in assigning CN for uncertain cases
found in new structure refinements should be as
simple as possible. The discriminant analysis
described above is not simple to apply, since it
requires the full set of data for the ‘certain’ cases. On
the other hand, it is evident that Vol is by far the
most important variable and with a single inde-
pendent variable the whole procedure is greatly sim-
plified. The linear regression analysis with CN as
dependent variable and Vol as independent variable
gave a correlation coefficient R=0-982 and the
following regression equation:

CN =0-197 (2)Vol + 283 (3). )

Using (1), or the plot of Fig. 3, from the volume of
a polyhedron containing » O atoms, one can derive
the expected CN, which is in general non-integer.
The most probable CN is the one that gives the
smallest absolute value of the difference, Scnevor
between the expected CN and the number of O
atoms n. For the uncertain cases, dcnvoy 1S reported
in the last column of Table 3, for all the alternatives.
Of course the attributions made using this method
coincide with the ones obtained by the discriminant
analysis using Vol alone.
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Table 3. List of variables used in the statistical
analyses for the 32 cases with uncertain CN

The second and third columns give the assignments of the discriminant
analyses (R = Rao method with seven variables; ¥ = Vol alone; * indicates
that the assigned CN is not equal to the number of O atoms). COL is the
collection code in the ICSD. In the last column Scwvo is the difference
between the estimated CN using equation (1) and the number of O atoms in
the polyhedra (see text). Distances are given in A, areas in A?and volumes
in

CN COL (d) Oy Omin  Gnax 8, Vol  Aw  Senvon
0 * - 11 2-545 0-167 2405 2970 0-565 33-42 5578 —-0-60
9 R V 11 2497 0078 2405 2623 0-218 29:97 5248 -0-28
8 RV 13 2557 0206 2-369 3-013 0-644 2645 5048 0-03
7 13 2492 0100 2369 2623 0-253 1950 4346 -0-34
10 R V 131 2603 0173 2479 3-043 0564 37-13 59-61 013
9 « » 131 2:554 0-082 2479 2699 0220 2851 5304 -0-57
9 * 131 2557 0-204 2-370 3-007 0637 28-59 53-52 0-55
8 RV 131 2501 0-122 2370 2:686 0-316 24-13 4898 -043
8 14 923 2519 0252 2-313 3009 069 2579 4875 =010
7 R 923 2449 0-169 2-313 2807 0494 20-i13 4276 -022
8 RV 923 2-581 0253 2233 3-012 0780 2670 5175 0-08
7 923 2-533 0-224 2-233 2850 0-617 2027 4430 -0-19
7 RV 923 2537 0-327 2321 3107 0786 2198 4573 015
6 923 2441 0229 2-321 2907 0-586 14:35 3775 -035
8 1017 2539 0-266 2265 3003 0737 2770 51-60 027
7RV 1017 2473 0204 2265 2901 0636 21-04 4397 -0-04
6 1017 2400 0-084 2265 2-507 0-242 1473 3749 -028
8 14 1391 2492 0-190 2341 2939 0-598 2721 4992 018
7 R 1391 2427 0-062 2-341 2490 0-149 1995 43-03 -025
7 1841 2:525 0299 2266 2076 0-810 22-51 4623 0-25
6 R V 1841 2434 0192 2266 2781 0-515 1680 3880 013
9 « 1841 2694 0-240 2-524 3014 0489 3920 6181 1-53
6 R V 1841 2:534 0-011 2524 2-544 0-020 16-71 38-87 011
8 4345 2-565 0-322 2251 3061 0-810 2658 5085 0-05
7 4345 2494 0273 2251 3-017 0-766 20-80 4504 -0-08
6 R V 4345 2:407 0160 2251 3706 0-455 1634 3761 0-04
7 R 9276 2-577 0302 2329 3-014 0685 2266 47-80 0-28
6 14 9276 2-504 0-255 2329 2964 0-635 1577 4047 =007
8 V14296 2539 0-226 2-314 2998 0684 26-55 5006 005
7 R 14296 2474 0-140 2-314 2737 0-423 2049 4360 -0-14
8 V. 15059 2543 0-218 2-330 2985 0655 2669 5022 0-07
7 R 15059 2:479 0-135 2330 2:726 0-396 20-59 4376 -013
9 15519 2607 0243 2-316 3-043 0727 32-85 56:66 0-28
8 R V 15519 2553 0193 2316 2901 0-585 2697 5054 0-13
7 16039 2-463 0221 2:273 2-947 0674 2178 4438 011
6 R V 16039 2382 0062 2273 2447 0174 1641 3762 0-05
8 R 16039 2546 0-182 2-278 2919 0-641 2879 5198 0-49
7 * V16039 2492 0109 2278 2623 0-325 1947 4284 -0-35
9 V 16764 2:565 0-252 2409 3088 0-679 3175 5540 007
8 R 16764 2499 0-169 2-409 2903 0494 2582 4918 -0-10
7 16975 2457 0-209 2-293 2894 0-601 2064 4367 -0-12
6 V16975 2:384 0-087 2293 2519 0-226 1620 3730 0-01
8 16975 2516 0-232 2-345 2-888 0-543 2517 4979 -0-22
6 R V 16975 2392 0038 2345 2428 0-083 17-11 3858 019
9 17034 2595 0-290 2-333 3-159 0-826 3298 5706 0-31
8 V17034 2:525 0212 2:333 2995 0661 2641 50-16 0-02
7 R 17034 2457 0-102 2-333 2:658 0-325 20-86 4438 =007
9 20196 2:551 0-203 2-359 2977 0-619 2963 5307 -035
8 R V 20196 2498 0134 2359 2752 0-393 2491 4839 -0-28
8 R V 20255 2579 0183 2438 2-864 0-427 28:77 53-04 0-48
6 20255 2484 0058 2437 2-558 0-121 1362 3888 0-50
8 V21033 2495 0218 2304 2981 0677 26:12 4905 -0-04
7 R 21033 2426 0102 2-304 2-599 0-295 2091 4319 -0-06
8 R V 23641 2546 0173 2416 2907 0491 26-84 5098 010
7 23641 2494 0101 2416 2:654 0238 1935 4397 -037
9 28425 2:577 0236 2415 3-058 0-643 3226 5590 017
8 R V 28425 2517 0163 2415 2906 0-492 26-47 4986 0-03
7 V31269 2455 0164 2:338 2805 0467 2123 4362 000
6 R 31269 2397 0060 2-338 2-485 0-147 17-15 3875 0-20
9 31280 2:562 0172 2-391 2-964 0-573 3315 5574 0-34
8 R V 31280 2512 0-088 2391 2633 0-242 2709 5000 015
8 35085 2-568 0-234 2:344 2956 0612 2763 5160 0-26
7 R V 35085 2:513 0-187 2344 2776 0-432 20-88 4514 -0-07
7 V100074 2473 0212 2290 2917 0626 2149 4522 0-05
6 R 100074 2399 0-091 2290 2:563 0273 1694 3820 0-16
12 100082 2722 0-250 2-448 3-060 0-612 4923 7034 0-50
9 R V 100082 2615 0-185 2448 2-876 0428 2971 5612 -033

723

In conclusion, the simplest suggested test consists
of calculating the volume of the polyhedra, and
applying either the plot of Fig. 3, or equation (1) to
estimate the most probable CN.
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